
1

GamingAnywhere—The First Open Source Cloud
Gaming System
CHUN-YING HUANG, National Taiwan Ocean University, Taiwan
KUAN-TA CHEN, Academia Sinica, Taiwan
DE-YU CHEN, Academia Sinica, Taiwan
HWAI-JUNG HSU, Academia Sinica, Taiwan
CHENG-HSIN HSU, National Tsing Hua University, Taiwan

We present the first open source cloud gaming system, called GamingAnywhere. In addition to its openness, we design Gaming-
Anywhere for high extensibility, portability, and reconfigurability. We implement GamingAnywhere on Windows, Linux, OS X,
and Android. We conduct extensive experiments to evaluate the performance of GamingAnywhere. Our experimental results
indicate that GamingAnywhere is efficient, scalable, adaptable to network conditions, and achieves high responsiveness and

streaming quality. GamingAnywhere can be employed by the researchers, game developers, service providers, and end users for
setting up cloud gaming testbeds, which, we believe, will stimulate more research innovations on cloud gaming systems and
applications.

Categories and Subject Descriptors: H.5 [Information Systems Applications] Multimedia Information Systems

General Terms: Design, Measurement

Additional Key Words and Phrases: Cloud games, remote rendering, live video streaming, real-time encoding, performance
evaluation, performance optimization

ACM Reference Format:
C.-Y. Huang, C. 2013.GamingAnywhere—The First Open Source Cloud Gaming System ACM Trans. Multimedia Comput. Com-
mun. Appl. 2, 3, Article 1 (May 2010), 20 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Cloud gaming systems render the game scenes on cloud servers and stream the encoded game scenes
to clients over the Internet. The clients send the user inputs, from joysticks, keyboards, and mice, to
the cloud servers. With cloud gaming systems, users can: (i) avoid upgrading their computers, for the
latest games, (ii) play the same games using the same clients on different platforms, such as PCs,

This work was supported in part by the National Science Council of Taiwan under the grants NSC100-2628-E-001-002-MY3,
NSC102-2219-E-019-001, and NSC102-2221-E-007-062-MY3.
Author’s address: C.-Y. Huang, 2 Pei-Ning Road Keelung, Taiwan 20224; email: chuang@ntou.edu.tw; K.-T. Chen, D.-Y.
Chen, H.-J. Hsu, 128 Academia Road, Section 2, Nankang, Taipei 11574; email: swc@iis.sinica.edu.tw, r96922083@ntu.edu.tw,
hjhsu@iis.sinica.edu.tw; C.-H. Hsu, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013; email: chsu@cs.nthu.edu.tw
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to
lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c⃝ 2010 ACM 1551-6857/2010/05-ART1 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

1:2 • C.-Y. Huang et al.

laptops, tablets, and smartphones, and (iii) play more games due to reduced hardware/software cost,
while game developers may: (i) support more platforms, (ii) avoid hardware/software incompatibility
issues, and (iii) increase net revenues. Therefore, cloud gaming systems have attracted attentions
from users, game developers, and service providers. In fact, the market potential of cloud gaming is
well recognized as evidenced by the recent acquisitions of cloud gaming startups, such as GaiKai [Sony
2012] and ESN [EA 2012].

For commercially-successful cloud gaming services, the cloud gaming systems must deliver high-
quality videos with low response delay, which is difficult in the best-effort Internet. The response delay
refers to the time difference between the client receiving a user input and the client displaying the
game frame reflecting that user input. Higher quality videos, such as 720p (1280x720) at 60 fps (frame-
per-second), inherently lead to higher bit rate, which render cloud gaming systems more vulnerable
to network congestion, and thus longer response delay. Longer response delay results in worse user
experiences, and may turn the users away from cloud gaming services. In fact, user studies reveal
that users may quit playing networked games if the response delay is longer than a genre-dependent
threshold, as low as 100 ms [Claypool and Claypool 2006; Chen et al. 2009]. Considering that game
scenes have to go through a pipeline of rendering, capturing, encoding, packetization, transmitting,
decoding, and displaying, it is very challenging to design and implement a cloud gaming system for
both high video quality and low response delay.

Remote desktop software packages, such as LogMeIn [LogMeIn 2012], TeamViewer [TeamViewer
2012], and UltraVNC [UltraVNC 2012], have been popular for some time, but were not designed for
highly interactive applications, and thus do not meet the strict requirements of cloud gaming [Chang
et al. 2011]. Although there exist commercial cloud gaming services, e.g., GaiKai [GaiKai 2012], On-
Live [OnLive 2012], and StreamMyGame [StreamMyGame 2012], a recent measurement study [Chen
et al. 2011] reports that these cloud gaming systems still suffer from high response delay, among other
limitations. For example, assuming a small, negligible network latency, 134 ms and 375 ms average
response delay are measured on the OnLive and StreamMyGame platforms respectively. Hence, the
problem of developing cloud gaming systems for high video quality and low response delay remains
open. We consider a major cause of the inferior performance of existing cloud gaming systems to be the
lack of an open source cloud gaming system, which will enable research groups to readily implement
and evaluate their new ideas for better cloud gaming experiences.

In this article, we present our efforts on designing, implementing, and evaluating GamingAnywhere,
which is to the best of our knowledge, the first open source cloud gaming system. GamingAnywhere
has three main advantages over other existing systems.

(1) GamingAnywhere is an open system, in the sense that a component of the video streaming pipeline
can be easily replaced by another component implementing a different algorithm, standard, or
protocol. For example, GamingAnywhere by default uses x264 [x264 2012] and vpxenc [WebM 2013]
to encode captured raw videos. To expand GamingAnywhere for stereoscopic games, an H.264/MVC
encoder may be plugged into it without significant changes. More generally, various algorithms,
standards, protocols, and system parameters can be rigorously evaluated using real experiments,
which is impossible on proprietary cloud gaming systems.

(2) GamingAnywhere is cross-platform, and is currently available on Windows, Linux, OS X, and An-
droid. This is made possible largely due to the modularized design of GamingAnywhere.

(3) GamingAnywhere has been designed to be efficient, as can be seen, for example, in its minimizing
of time and space overhead by using shared circular buffers to reduce the number of memory copy
operations. These optimizations allow GamingAnywhere to provide a high-quality gaming experi-
ence with short response delay. In particular, on a commodity Intel i7 server, GamingAnywhere

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

GamingAnywhere—The First Open Source Cloud Gaming System • 1:3

delivers real-time 720p videos at ≥ 35 fps, which is equivalent to less than 28.6 ms of processing
time for each video frame, with a video quality significantly higher than that of existing cloud gam-
ing systems. In particular, GamingAnywhere outperforms OnLive by 5 dB in Peak Signal-to-Noise
Ratio (PSNR).

This article makes two main contributions. First, we develop an open cloud gaming system, Gaming-
Anywhere, which can be used by cloud gaming developers, cloud service providers, and system re-
searchers for setting up a complete cloud gaming testbed. GamingAnywhere is the first open cloud
gaming testbed in the literature. Second, we conduct extensive experiments using GamingAnywhere
to quantify its performance and overhead. We also derive the optimal setups of system parameters,
which in turn allow users to install and try out GamingAnywhere on their own servers.

1.1 Design Objectives

GamingAnywhere aims to provide an open platform for researchers to develop and study real-time
multimedia streaming applications in the cloud. Its objectives are as follows.

(1) Extensibility: GamingAnywhere adopts a modularized design. Both platform-dependent compo-
nents such as audio and video capturing and platform-independent components such as codecs and
network protocols can be easily modified or replaced. Developers can follow the programming inter-
faces of modules in GamingAnywhere to extend the capabilities of the system. GamingAnywhere is
not limited only to games, and any real-time multimedia streaming application such as live casting
can be done using the same system architecture.

(2) Portability: In addition to desktop computers, mobile devices are now becoming one of the most
potential clients of cloud services because of the widespread of wireless access and the limited
resources available on mobile devices. For this reason, we maintain the principle of portability
when designing and implementing GamingAnywhere. Currently the server supports Windows,
Linux, and OS X, while the client supports Windows, Linux, OS X, and Android. New platforms
can be easily included by replacing platform-dependent components in GamingAnywhere. Besides
the easily replaceable modules, the external components leveraged by GamingAnywhere are highly
portable as well. This also makes GamingAnywhere easier to be ported to mobile devices. For these
details please refer to Section 4.

(3) Configurability: A system researcher may conduct experiments for real-time multimedia stream-
ing applications with diverse system parameters. A large number of built-in audio and video codecs
are supported by GamingAnywhere. In addition, GamingAnywhere exposes all available configura-
tions to users so that it is possible to try out the best combinations of parameters by simply editing
a text-based configuration file and fitting the system into a customized usage scenario.

(4) Openness: GamingAnywhere is publicly available at http://gaminganywhere.org/. Use of Gaming-
Anywhere in academic research is free of charge but researchers and developers should follow the
license terms claimed in the binary and source packages.

1.2 Paper Organization

The rest of this paper is organized as follows. Section 2 discusses the related work in the literature.
Section 3 depicts the system architecture. This is followed by the detailed elaborations of implementa-
tion issues in Section 4. Section 5 gives the experimental results. We conclude the paper in Section 6.
Last, we empirically determine the best encoding parameters in Appendix A.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

1:4 • C.-Y. Huang et al.

2. RELATED WORK

We first survey the existing cloud gaming systems. Then, we review prior works on quantifying the
performance of cloud gaming systems.

2.1 Cloud Gaming Systems

We classify the cloud gaming systems into three genres: (i) 3D graphics streaming [Eisert and Fechteler
2008; Jurgelionis et al. 2009], (ii) video streaming [Winter et al. 2006; Holthe et al. 2009], and (iii) video
streaming with post-rendering operations [Shi et al. 2011; Giesen et al. 2008]. These three approaches
differ from one another in how they divide the workload between the cloud servers and clients.

With the 3D graphics streaming approach [Eisert and Fechteler 2008; Jurgelionis et al. 2009], the
cloud servers intercept the graphics commands, compress the commands, and stream them to the
clients. The clients then render the game scenes using its graphics chips based on graphics command
sets such as OpenGL and Direct3D. The clients’ graphics chips must be not only compatible with the
streamed graphics commands but also powerful enough to render the game scenes in high quality and
real time. Because this approach imposes more workload on the clients, it is less suitable for resource-
constrained devices, such as mobile devices and set-top boxes.

In contrast, with the video streaming approach [Winter et al. 2006; Holthe et al. 2009] the cloud
servers render the 3D graphics commands into 2D videos, compress the videos, and stream them to
the clients. The clients then decode and display the video streams. The decoding can be done using
low-cost video decoder chips massively produced for consumer electronics. This approach relieves the
clients from computationally-intensive 3D graphics rendering and is ideal for streaming clients on
resource-constrained devices. Since the video streaming approach does not rely on specific 3D chips,
the same clients can be readily ported to different platforms, which are potentially GPU-less.

The approach of video streaming with post-rendering operations [Shi et al. 2011; Giesen et al. 2008]
is somewhere between the 3D graphics streaming and video streaming. While the 3D graphics ren-
dering is performed at the cloud servers, some post-rendering operations are optionally done on the
clients for augmenting motions, lighting, and materials using local resources [Chen et al. 2010]. These
post-rendering operations have low computational complexity and run in real time even without GPUs.

Similar to the proprietary cloud gaming systems, the proposed GamingAnywhere employs the video
streaming approach for lower loads on the clients. Differing from other systems [Winter et al. 2006;
Holthe et al. 2009] in the literature, GamingAnywhere is open, modularized, cross-platform, and effi-
cient. In fact, it is the first complete system of its kind, and is of interests for researchers, game de-
velopers, service providers, and end users. The initial version of GamingAnywhere [Huang et al. 2013]
was introduced to the public in February 2013. Since then we have improved the system from several
aspects: We have revised the mechanisms for video frame capture and user control event interception
to improve the overall system performance. The architecture is now more neutral to platform-specific
implementations so that GamingAnywhere supports exactly the same functionality on all the sup-
ported platforms. Further, we have integrated a number of new video encoders with GamingAnywhere
and provide measurement studies based on the popular VP8 video encoder. GamingAnywhere is get-
ting more matured and now researchers and developers are able to integrate the proposed system with
their preferred flavors — as an standalone application, as as a static library, or as a dynamically-linked
shared object.

2.2 Measuring the Performance of Cloud Gaming Systems

Measuring the performance of desktop streaming systems has long been considered in the litera-
ture [Lai and Nieh 2006; Nieh et al. 2003; Wong and Seltzer 1999; Packard and Gettys 2003; Tolia
et al. 2006]. The slow-motion benchmarking [Lai and Nieh 2006; Nieh et al. 2003] runs a slow-motion
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

GamingAnywhere—The First Open Source Cloud Gaming System • 1:5

version of an application on the server, and analyzes network packets between the server and client.
Slow-motion benchmarking augments the execution speed of applications, and is thus less suitable
to real-time applications, including cloud games. Packard and Gettys [Packard and Gettys 2003] an-
alyze the network traces between the X-Window server and client under diverse network conditions.
The traces are used to compare the compression ratios of different compression mechanisms, and to
quantify the effects of network impairments. Wong and Seltzer [Wong and Seltzer 1999] measure the
performance of the Windows NT Terminal Service, in terms of process, memory, and network band-
width. The Windows NT Terminal Service is found to be generally efficient with multi-user access,
but the response delay increases when the system load is high. Tolia et al. [Tolia et al. 2006] quan-
tify the performance of several applications running on a VNC server, which is connected to a VNC
client via a network with diverse round-trip time (RTT). It is determined that the response delay of
these applications highly depends on the degree of the application’s interactivity and network RTT.
The performance metrics considered in [Lai and Nieh 2006; Nieh et al. 2003; Wong and Seltzer 1999;
Packard and Gettys 2003; Tolia et al. 2006] are only suitable to desktop streaming systems, which do
not impose strict real-time requirements.

More recently, a few studies measure the performance of remote desktop streaming and cloud gam-
ing systems. Chang et al.’s [Chang et al. 2011] methodology to study the performance of games on
desktop streaming systems has been employed to evaluate several implementations, including Log-
MeIn [LogMeIn 2012], TeamViewer [TeamViewer 2012], and UltraVNC [UltraVNC 2012]. Chang et
al. establish that player performance and Quality-of-Experience (QoE) depend on video quality and
frame rates. It is observed that the desktop streaming systems cannot support cloud games given that
the achieved frame rate is as low as 9.7 fps. Chen et al. [Chen et al. 2011] propose another methodology
to quantify the response delay, which is even more critical to cloud games [Claypool and Claypool 2006;
Henderson 2003; Zander et al. 2005]. Two proprietary cloud gaming systems, OnLive [OnLive 2012]
and StreamMyGame [StreamMyGame 2012], are evaluated using this methodology. Their evaluation
results reveal that StreamMyGame suffers from a high response delay, while OnLive achieves reason-
able response delay. Chen et al. [Chen et al. 2011] point out that the performance edge of OnLive can
be attributed to its customized hardware platform and optimized game software. In addition, Lee et
al. [Lee et al. 2012] evaluate whether computer games are equally suitable to the cloud gaming setting
and find that some games are more “compatible” with cloud gaming than others. Meanwhile, Choy et
al. [Choy et al. 2012] evaluate whether a large-scale cloud gaming infrastructure is feasible on the
current Internet and propose a smart-edge solution to mitigate user-perceived delays when playing on
the cloud.

In light of the literature review, the current paper tackles the following question: Can we do better
than OnLive using commodity desktops and unmodified game software? We employ the measurement
methodologies proposed in [Chen et al. 2011] to compare the proposed GamingAnywhere against On-
Live.

3. SYSTEM ARCHITECTURE

Figure 1 presents the high-level deployment scenario of GamingAnywhere. A user first logs into the
system via a portal server, which provides a list of available games to the user. The user then selects a
preferred game and requests to play the game. Upon receipt of the request, the portal server finds an
available game server, launches the selected game on the server, and returns the game server’s URL
to the user. Finally, the user connects to the game server and starts to play. The portal server is a web
service providing login and game-selection user interface. If login and game-selection requests are sent
from a customized client, the portal server does not even need a fancy user interface. Actions can be

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

1:6 • C.-Y. Huang et al.

Portal Servers Clients/Users

Game Selection

Game

Interaction

Game

Conguration

Game Servers

Fig. 1. The deployment scenario of
GamingAnywhere.

Game console

Data Flow

Control Flow

Running the selected game

A
g

e
n

t

P
ro

ce
ss

/T
h

re
a

d

Game Server Game Client

Internet

Audio / Video

Encoder

RTSP / RTP / RTCP

Audio / Video

Capturer
Replay User Inputs

(Keyboard, Mouse, ...)

Decode Input Events

(Customized Protocol)
RTSP / RTP / RTCP

Audio / Video

Decoder

Encode Input Events

(Customized Protocol)

Audio / Video

Player
User Inputs

(Keyboard, Mouse, ...)

Fig. 2. The server and the client architecture of GamingAnywhere.

sent as REST-like [Fielding 2000; Costello 2007] requests via standard HTTP or HTTPS protocols. The
design of the portal server is out of the scope of this article.

Figure 2 shows the architecture of the game server and the game client of GamingAnywhere. We
define two types of network flows in the architecture, the data flow and the control flow. Whereas the
data flow is used to stream audio and video (A/V) frames from the server to the client, the control
flow runs in a reverse direction, being used to send the user’s actions from the client to the server.
The system architecture of GamingAnywhere allows it to support both PC- and Web-based games. The
game selected by a user runs on a game server. There is an agent running along with the selected
game on the same server. The agent can be a stand-alone process or a module (in the form of shared
object or DLL) injected into the selected game. The choice depends on the type of the game and how
the game is implemented. The agent has two major tasks. The first task is to capture the A/V frames of
the game, encode the frames using the chosen codecs, and then deliver the encoded frames to the client
via the data flow. The second task of the agent is to interact with the game. On receipt of the user’s
actions from the client, it must behave as the user and play with the game by re-playing the received
keyboard, mouse, joysticks, and even gesture events. However, as there exist no standard protocols for
delivering users’ actions, we design and implement the transport protocol of user actions by ourselves.

The client is a customized game console implemented by combining an RTSP/RTP multimedia player
and a keyboard/mouse logger. The system architecture of GamingAnywhere allows observers1 by na-
ture because the server delivers encoded A/V frames using the standard RTSP and RTP protocols. In
this way, an observer can watch a game play by simply accessing the corresponding game URL with
full-featured multimedia players, such as the VLC media player [VideoLAN 2013], which are available
on almost all OS’s and platforms.

4. IMPLEMENTATION

The implementation of GamingAnywhere includes server and client, each of which contains a number
of modules whose details are elaborated in this section. GamingAnywhere leverages several external
libraries including libavcodec/libavformat [FFmpeg project 2013], live555 [Live Networks 2013], and

1In addition to playing a game themselves, hobbyists may also like to watch how other gamers play the same game. An observer
can only watch how a game is played but cannot be involved in the game.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

GamingAnywhere—The First Open Source Cloud Gaming System • 1:7

Audio
source

Desktop/Game

Video
source

Video
encoder

Audio
encoder

Audio
buffer

Video
buffer
pools

(1a)
audio
capture

(1v)
video

capture

Threads

Shared buffers

(2a)
write audio

frames

(2v)
write a
video
frame

(3a)
wake up
encoder

(3v)
wake up
encoder

(4a)
read
audio

frames

(4v)
read a video
frame

(5a)
encode and
send

(5v)
encode and

send

Object owner

RTSP
server
thread

Data Flow Connections (RTSP/RTP/RTCP)

(1n)
handle
clients

Input
replayer

Control Flow Connections

(2i)
replay
input
events

(1i)
receive
input
events

Fig. 3. The relationships among server modules, shared buffers, and network connections.

SDL library [Lantinga 2013]. The libavcodec/libavformat library is part of the ffmpeg project, which is
a package to record, convert, and stream audio and video. We use this library to encode and decode the
A/V frames on both the server and the client. In addition, it is also used to handle the RTP protocol at
the server. The live555 library is a set of C++ libraries for multimedia streaming using open standard
protocols (RTSP, RTP, RTCP, and SIP). We use this library to handle RTSP/RTP protocols [Schulzrinne
et al. 1998; Schulzrinne et al. 2003] at the client. The Simple DirectMedia Layer (SDL) library is
a cross-platform multimedia library designed to provide low-level access to audio, keyboard, mouse,
joystick, 3D hardware via OpenGL and a 2D video frame buffer. We use this library to render audio
and video at the client. All the above libraries have been ported to a number of platforms, including
Windows, Linux, OS X, iOS, and Android.

4.1 GamingAnywhere Server

The relationships among server modules are depicted in Figure 3. Some of the modules are imple-
mented in separate threads. When an agent is launched, its four modules, i.e., the RTSP server, audio
source, video source, and input replayer are launched as well. The RTSP server and the input replayer
modules are immediately started to wait for incoming clients (starting from the path 1n and 1i in the
figure). The audio source and the video source modules are kept idle after initialization. When a client
is connected to the RTSP server, the encoder threads are launched and an encoder must notify the
corresponding source module that it is ready to encode the captured frames. The source modules then
start to capture audio and video frames when one or more encoders are ready to work. Encoded audio
and video frames are generated concurrently in real time. The data flows of audio and video frame
generations are depicted as the paths from 1a to 5a and from 1v to 5v, respectively. The details of each
module are explained respectively in the following subsections.

4.1.1 RTSP, RTP, and RTCP Server. The RTSP server thread is the first thread launched in the
agent. It accepts RTSP commands from a client, launches encoders, and setups data flows for delivering
encoded frames. The data flows can be conveyed by a single network connection or multiple network
connections depending on the preferred transport layer protocol, i.e., TCP or UDP. In the case of TCP,
encoded frames are delivered as interleaved binary data in RTSP [Schulzrinne et al. 1998], hence
necessitating only one data flow network connection. Both RTSP commands and RTP/RTCP packets
are sent via the RTSP over TCP connection established with a client. In the case of UDP, encoded
frames are delivered based on the RTP over UDP protocol. Three network flows are thus required to

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

1:8 • C.-Y. Huang et al.

RTSP/RTP Server Video Encoder Video Source Audio Encoder Audio SourceClient

DESCRIBE /object

A/V Info.

video: streamid=0

audio: streamid=1

SETUP
/object/streamid=0

Video

Transport Info.

SETUP
/object/streamid=1

Audio

Transport Info.

PLAY

OK

La
u

n
ch

e
d

,
b

u
t

d
o

e
s

n
o

t
ca

p
tu

re

b
e

ca
u

se
 n

o
 e

n
co

d
e

r
is

 r
u

n
n

in
g

La
u

n
ch

e
d

,
b

u
t

d
o

e
s

n
o

t
ca

p
tu

re

b
e

ca
u

se
 n

o
 e

n
co

d
e

r
is

 r
u

n
n

in
g

Send encoded video frames

Send encoded audio frames

TEARDOWN

OK

Launch audio and video encoders

Terminate audio and video encodersR
e

n
d

e
r

a
u

d
io

 a
n

d
 v

id
e

o

Constantly

feed captured

audio frames

Constantly

feed captured

video frames

Fig. 4. The UML diagram for the RTSP/RTP protocol and the involved GamingAnywhere server components.

accomplish the same task: In addition to the RTSP over TCP connection, two RTP over UDP flows are
used to deliver encoded audio and video frames, respectively.

We implement the mechanisms for handling RTSP commands and delivering interleaved binary data
by ourselves, while using the libavformat library to do the packetization of RTP packets. If encoded
frames are delivered as interleaved binary data, the frames are filled into a raw RTP packet and sent
using the existing RTSP stream. On the other hand, if encoded frames are delivered via RTP over UDP,
they are sent directly to the client via libavformat calls.

The RTSP server thread exports a programming interface for encoders to send encoded frames.
Therefore, whenever an encoder generates an encoded frame, it can send out the frame to the client
via the interface without knowing the details about the underlying network connections. The UML
diagram of the RTSP/RTP protocol and involved server components is shown in Figure 4. A client con-
nects to the RTSP server, requests for the codec and channel information with the DESCRIBE command,
sets up transport layer protocols for delivery of audio and video data with the SETUP command, and
then starts receiving audio and video data after the PLAY command. The audio and video encoders
are launched by the RTSP server on receipt of the PLAY command from the client. Meanwhile, the au-
dio and the video sources also start to capture and feed audio and video frames to the corresponding
encoders, which are responsible to encode and send encoded data to the client. The audio and video
encoders are terminated when the client tears down the session or is disconnected.

4.1.2 Video Source. Capturing of game screens (frames) is a platform-dependent task. We currently
provide two implementations of the video source module to capture the game screens in real time.
One implementation is called the desktop capture module, which captures the entire desktop screen
on demand, and extracts the desired region if necessary. Another implementation is called the API
intercept module, which intercepts a game’s graphics drawing function calls and captures the screen
directly from the game’s back buffer [Microsoft 2012] immediately whenever the rendering of a new
game screen is completed.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

GamingAnywhere—The First Open Source Cloud Gaming System • 1:9

Given a desired frame rate (commonly expressed in frame-per-second, fps), the two implementations
of the video source module work in different ways. The desktop capture module is triggered in a polling
manner; that is, it actively takes a screenshot of the desktop at a specified frequency. For example, if
the desired frame rate is 24 fps, the capture interval will be 1/24 sec (≈ 41.7 ms). By using a high-
resolution timer, we can keep the rate of screen captures approximately equal to the desired frame
rate. On the other hand, the API intercept module works in an event-driven manner. Whenever a
game completes the rendering of an updated screen in the back buffer, the API intercept module will
have an opportunity to capture the screen for streaming. Because this module captures screens in an
opportunistic manner, we use a token bucket rate controller [Tanenbaum 2002] to decide whether our
module should capture the screen in order to achieve the desired streaming frame rate. For example,
assuming a game updates its screen 100 times per second and the desired frame rate is 50 fps, the
API intercept module will only capture one game screen for every two screen updates. However, if the
game’s frame rate is lower than the desired rate, the module simply captures game screens at the same
rate of the game renderer. Each captured frame is associated with a timestamp, which is a zero-based
sequence number. Captured frames along with their timestamps are stored in a shared buffer owned
by the video source module and shared with a video encoder. The video source module serves as the
only buffer writer, while the video encoder is the buffer reader. Therefore, a reader-writer lock must be
acquired every time before accessing the shared buffer.

At present, the desktop capture module is implemented in Linux and Windows. We use the MIT-
SHM extension for the X-Window system to capture the desktop on Linux and use GDI to capture
the desktop graphics on Windows. As for the API intercept module, it currently supports DirectDraw,
Direct3D, and SDL games on Windows and SDL games on Linux. Both modules support captured
frames of pixel formats in RGBA, BGRA, and YUV420P, with a high extensibility to incorporate other
pixel formats for future needs.

4.1.3 Audio Source. Capturing of audio frames is a platform-dependent task as well. In our im-
plementation, we use the ALSA library and Windows audio session API (WASAPI) to capture sound
on Linux and Windows, respectively. The audio source module regularly captures audio frames (also
called audio packets) from an audio device (normally the default waveform output device). The cap-
tured frames are copied by the audio source module to a buffer shared with the encoder. The encoder
will be awakened each time an audio frame is generated to encode the new frame. To simplify the
programming interface of GamingAnywhere, we require each sample of audio frames to be stored as a
32-bit signed integer.

One issue that an audio source module must handle is the frame discontinuity problem. When there
is no application generating any sound, the audio read function may return either 1) an audio frame
with all zeros, or 2) an error code indicating that no frames are currently available. If the second
case, an audio source module needs to still emit silence audio frames to the encoder because encoders
normally expect continuous audio frames no matter whether audible sound is present or not. Therefore,
an audio source module must generate silence audio frames in the second case to resolve the frame
discontinuity problem. We observe that modern Windows games often play audio using WASAPI, which
suffers from the frame discontinuity problem. Our WASAPI-based audio source module has overcome
the problem by carefully estimating the duration of silence periods and generating silence frames
accordingly, as illustrated in Figure 5. From the figure, the length of the silence frame should ideally
be t1−t0; however, the estimated silence duration may be slightly longer or shorter if the timer accuracy
is not sufficiently high.

4.1.4 Frame Encoding. Audio and video frames are encoded by two different encoder modules,
which are launched when there is at least one client connected to the game server. GamingAnywhere

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

1:10 • C.-Y. Huang et al.

silence periodaudible period audible period

t0 t1

P1 P2 P3 P5 P6 P7 P8 P9 P10 P11

Audio Signal

Audio Packets (Frames)

P4

Fig. 5. Sample audio signals that may cause the frame discontinuity problem.

currently supports an one-encoder-for-all mode. In this mode, the frames generated by a frame source
are only read and encoded by one encoder regardless of the number of observers2. Therefore, a total
of two encoders, one for video frames and another for audio frames, are in charge of encoding tasks.
The benefit of this mode is better efficiency as the CPU usage does not increase when there are more
observers. All the video and audio frames are encoded only once and the encoded frames are delivered
to the corresponding clients in a unicast manner. In case that a demand on providing different stream
qualities for different observers in the one-encoder-for-all mode, we suggest to adopt a multimedia
transcoder sit in-between the game server and the observers.

Presently, both the video and audio encoder modules are implemented using the libavcodec library,
which is part of the ffmpeg project. The libavcodec library supports various audio and video codecs and
is completely written in C. Therefore, GamingAnywhere can use any codec supported by libavcodec. In
addition, since the libavcodec library is highly extensible, researchers can easily integrate their own
code into GamingAnywhere to evaluate its performance in cloud gaming.

4.1.5 Input Handling. The input handling module is implemented as a separate thread. This mod-
ule has two major tasks: 1) to capture input events on the client, and 2) to replay the events occurring
at the client on the game server.

Unlike audio and video frames, input events are delivered via a separated connection, which can
be TCP or UDP. Although it is possible to reuse the RTSP connection for sending input events from
the client to the server, we decided not to adopt this strategy for three reasons: 1) The delivery of
input events may be delayed due to other messages, such as RTCP packets, sent via the same RTSP
connection. 2) Data delivery via RTSP connections incurs slightly longer delays because RTSP is text-
based and formatting / parsing text is relatively time-consuming. 3) There is no such standard of
embedding input events in an RTSP connection. This means that we will need to modify the RTSP
library and inevitably make the system more difficult to maintain.

The implementation of the input handling module is intrinsically platform-dependent because the
input event structure is OS- and library-dependent. Currently GamingAnywhere supports the four in-
put formats of Windows, X Window, Mac OS X, and SDL. Upon the receipt of an input event3, the input
handling module first converts the received event into the format required by the server and sends the
event structure to the server. GamingAnywhere replays input events using the SendInput function on
Windows, the XTEST extension on Linux, and the CGPostEvent function on Mac OS X. Additionally,
with API interception techniques, GamingAnywhere also attempts to replay control events within a
game process to shorten the replay latency incurred by the event processing mechanisms of operation
systems. While the above replay functions work quite well for most desktop and game applications,
some games adopt different approaches for capturing user inputs. For example, the SendInput func-

2In the current design, there can be one player and unlimited observers simultaneously in a game session.
3The capturing of input events on clients will be elaborated in Section 4.2.3.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

GamingAnywhere—The First Open Source Cloud Gaming System • 1:11

tion on Windows does not work for Batman and Limbo, which are two popular action adventure games.
In this case, GamingAnywhere can be configured to use other input replay methods, such as hooking
the GetRawInputData function on Windows to “feed” input events whenever the function is called by
the games.

Game Interaction

Main
thread

Control Flow Connections

(1i)
receive
input
events

(2i)
send
input
events

SDL Rendering Input Events

Data Flow Connections

R
T

S
P

c
li

e
n

t
th

re
a

d

Video
buffer

Audio
buffer

Threads

Buffers

Object owner

(1r)
receive
encoded
A/V
frames

(2rv)
buffer

an
encoded

audio
frames

(2ra)
buffer
encoded
audio frames

(3rv)
decode and render

video frames

(3ra)
decode and render
audio frames
(callback)

Fig. 6. The relationships among client modules, shared
buffers, and network connections.

FreeBSD with

Dummynet

LAN

OnLive

Server

Internet

LAN

GamingAnywhere

Server

Client

Router

Fig. 7. The network topology of our experiments.

4.2 GamingAnywhere Client

The client is basically a remote desktop client that displays real-time game screens which are captured
at the server and delivered in the form encoded audio and video frames. The relationships among client
modules are shown in Figure 6. The GamingAnywhere client contains two worker threads: one is used
to handle user inputs (starting from path 1i) and the other is used to render audio and video frames
(starting from path 1r). In this section, we divide the discussion on the client design into three parts,
i.e., the network protocols, the decoders, and input handling.

4.2.1 RTSP, RTP, and RTCP Clients. In the GamingAnywhere client, we use the live555 library
to handle the network communications. The live555 library is entirely written in C++ with an event-
driven design. We take advantage of the class framework of live555 and derive from the RTSPClient

and MediaSink classes to register callback functions that handle network events. Once the RTSP client
has successfully set up audio and video sessions, we create two sink classes to respectively handle the
encoded audio and video frames that are received from the server. Both sink classes are inherited from
the MediaSink class and the implemented continuePlaying virtual function is called when the RTSP
client issues the PLAY command. The continuePlaying function attempts to receive an encoded frame
from the server. When a frame is received successfully, the function triggers a callback function that
puts the frame in a buffer and decodes the video frame if possible. The continuePlaying function will
then be called again to receive the next frame.

4.2.2 Frame Buffering and Decoding. To provide better gaming experience in terms of latency, the
video decoder currently does not buffer video frames at all. In other words, the video buffer component
in Figure 6 is simply used to buffer packets that are associated with the latest video frame. Because
live555 provides us with packet payloads without an RTP header, we detect whether consecutive pack-
ets correspond to the same video frame based on the marker bit [Schulzrinne et al. 2003] in each
packet. That is, if a newly received packet has a zero marker bit (indicating that it is not the last
packet associative with a video frame), it will be appended into the buffer; otherwise, the decoder will

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

1:12 • C.-Y. Huang et al.

decode a video frame based on all the packets currently in the buffer, empty the buffer, and place the
newly arrived packet in the buffer. Although this zero-buffering strategy may lead to inconsistency in
video playback rate when network delays are unstable, it reduces the input-response latency due to
video playout to a minimum level. We believe that this design tradeoff yields an overall better cloud
gaming experience.

The way GamingAnywhere handles audio frames is different from its handling of video frames. Upon
the receipt of audio frames, the RTSP client thread does not decode the frames, but instead simply
places all the received frames in a shared buffer (implemented as a FIFO queue). This is because the
audio rendering of SDL is implemented using an on-demand approach. That is, to play audio in SDL,
a callback function needs to be registered and it is called whenever SDL requires audio frames for
playback. The memory address m to fill audio frames and the number of required audio frames n are
passed as arguments to the callback function. The callback function retrieves the audio packets from
the shared buffer, decodes the packets, and fills the decoded audio frames into the designated memory
address m. Note that the callback function must fill exactly n audio frames into the specified memory
address as requested. This should not be a problem if the number of decoded frames is more than
requested. If not, the function will wait until there are sufficient number of frames. We implement
this waiting mechanism using a mutual exclusive lock (mutex). If the RTSP client thread has received
new audio frames, it will append the frames to the buffer and also trigger the callback function to read
more frames. To produce smooth audio outputs, the audio decoder starts to play when it has buffered at
least n audio frames, which is by default 1024 frames per channel (approximately 23 ms for CD-quality
stereo audio).

4.2.3 Input Handling. The input handling module on the client has two major tasks. One is to
capture input events made by game players, and the other is to send captured events to the server.
When an input event is captured, the event structure is sent to the server directly. Nevertheless, the
client still has to tell the server the format and the length of a captured input event.

At present, GamingAnywhere supports the mechanism for cross-platform SDL event capturing.
In addition, on certain platforms, such as Windows, we provide more sophisticated input capture
mechanisms to cover games with special input mechanisms and devices. Specifically, we use the
SetWindowsHookEx function with WH KEYBOARD LL and WH MOUSE LL hooks to intercept low-level key-
board and mouse events. By doing so we perfectly mimic every move of the players’ inputs on the
game server.

5. EXPERIMENT STUDIES

In this section, we conduct extensive experiments to evaluate GamingAnywhere.

5.1 Setup

In our lab, we set up a testbed consisting of Windows 7 desktops with Intel 2.67 GHz i7 processors.
Figure 7 illustrates the experimental setup, which consists of a server, a client, and a router. We com-
pare the performance of GamingAnywhere against OnLive [OnLive 2012]. The OnLive client connects
to the OnLive server over the Internet, while the GamingAnywhere client connects to its server via a
LAN. To impose diverse network conditions, we add a FreeBSD router between the client and server,
and run dummynet on it to inject constraints of delays, packet losses, and network bandwidths. Although
the OnLive server is outside our LAN, we observed that the quality of the path was consistently good
throughout the experiments. In particular, its network delay was around 130 ms and the packet loss
rate is less than 10−6. Hence, the path between the OnLive server and our client is essentially a com-
munication channel with sufficient bandwidth, zero packet loss rate, and a constant 130 ms latency.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

GamingAnywhere—The First Open Source Cloud Gaming System • 1:13

We configure the GamingAnywhere server to use x264 and the encoding parameters recommended
in Appendix A. GamingAnywhere runs on UDP by default. We consider three games from three pop-
ular genres: action adventure (Batman), first-person shooter (FEAR), and real-time strategy (DOW).
Detailed descriptions on the games are given in [Huang et al. 2013]. We set the encoding bit rate to
be 3 Mbps. The games are streamed at a resolution of 720p with 50 fps (frames per second) unless
otherwise specified. The detailed experimental designs and results are given in the rest of this section.

5.2 Responsiveness

We define response delay (RD) as the time difference between a user submitting a command and the
corresponding in-game action appearing on the screen. Studies [Claypool and Claypool 2006; Hender-
son 2003; Zander et al. 2005] report that players of various game genres can tolerate different degrees
of RD; for example, first-person shooter game players demand for less than 100 ms RD [Claypool and
Claypool 2006]. We adopt the RD measurement procedure proposed in [Chen et al. 2011], which divides
the RD into:

—Processing delay (PD) is the time required for the server to receive and process a player’s command,
and to encode and transmit the corresponding frame to that client.

—Playout delay (OD) is the time required for the client to receive, decode, and render a frame on the
display.

—Network delay (ND) is the time required for a round of data exchange between the server and client.
ND is also known as RTT.

Therefore, we have RD = PD +OD +ND .
ND can be measured using probing packets, e.g., in ICMP protocol, and is not controlled by cloud

gaming systems. Thus, for a fair comparison between OnLive and GamingAnywhere, we compare only
the processing delay on the server (PD) and the playout delay on the client (OD) of the two systems.
Measuring PD and OD is much more challenging than measuring RD, because they occur internally in
the cloud gaming systems, which may be closed and proprietary. The procedure detailed in [Chen et al.
2011] measures the PD and OD using external probes only, and thus works for OnLive even though
we do not have access to their game servers in the cloud.

For GamingAnywhere, we further divide the PD and OD into subcomponents by instrumenting the
server and client. More specifically, PD is divided into: (i) memory copy, which is the time for copying
a raw image out of the games, (ii) format conversion, which is the time for color-space conversion, (iii)
video encoding, which is the time for video compression, and (iv) packetization, which is the time for
segmenting each frame into one or multiple packets. OD is divided into: (i) frame buffering, which is
the time for receiving all packets belonging to the current frame (ii) video decoding, which is the time
for video decompression, and (iii) screen rendering, which is the time for displaying the decoded frame.

Results. Figure 8 reports the average PD (server) and OD (client) achieved by the considered cloud
gaming systems. We make several observations. First, the OD is small, ≤ 31 ms in all cases. This
reveals that all the decoders are efficient, and the decoding time of different games does not fluctuate
too much. Second, GamingAnywhere achieves a much smaller PD, at most 34 ms, than OnLive, which
is observed to be as high as 191 ms. This demonstrates the efficiency of the proposed GamingAnywhere:
the PDs of OnLive are 3+ times longer than that of GamingAnywhere. Last, only GamingAnywhere
achieves sub-100 ms RD.

Figure 9 presents the decomposed delay subcomponents of PD and OD. This figure reveals that the
GamingAnywhere server and client are well-tuned, in the sense that all the steps in the pipeline are
fairly efficient. Even for the most time-consuming video encoding (at the server) and video decoding

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

1:14 • C.-Y. Huang et al.

GA Onlive

P
ro

ce
ss

in
g

de
la

y
+

 P
la

yo
ut

 d
el

ay
 (

m
s)

0
50

10
0

15
0

20
0

GA Onlive

0
50

10
0

15
0

20
0

27 34 32

118 110

191

12
14 14

24 31

21Processing Delay
Playout Delay

Batman
FEAR
DOW

Fig. 8. Response delays of different systems.

P
ro

ce
ss

in
g

D
el

ay
 (

m
s)

0
10

20
30

40
50

6
5

14

2

10

6

16

2

11

5

14

2

Batman FEAR DOW

Packetization
Video encoding

Format conversion
Memory copy

Batman FEAR DOW
P

la
yo

ut
 D

el
ay

 (
m

s)
0

5
10

15
20

1

6

5

2

6

6

1

6

7

Screen rendering
Video decoding

Frame buffering

Fig. 9. Delay decomposition of GamingAnywhere.

0
50

10
0

15
0

20
0

25
0

P
ro

ce
ss

in
g

de
la

y
(m

s)

47 40 56

293

Intel Core i7−920 2.6 GHz
Intel Core i5−760 2.8 GHz
Intel Core 2 Quad Q6600 2.4 GHz
AMD Athlon 64 4200+ 2.2 GHz

Fig. 10. Implication of CPU on responsiveness. Sample results from FEAR.

(at the client) operations, each frame is finished in at most 16 and 7 ms on average. Such a short delay
contributes to the lower RD of GamingAnywhere.

Figure 10 reports how different CPUs affect the PD of GamingAnywhere. We do not consider OnLive
servers as they are managed by OnLive Inc. This figure shows that GamingAnywhere achieves a PD
of ≤ 56 ms on Intel C2D and better CPUs. Moreover, GamingAnywhere suffers from higher processing
delays on AMD Althon 64 CPUs, which may be attributed to the SSSE3-enabled x264 binary, as the
SSSE3 instruction set is not available on some AMD Althon 64 CPUs.

5.3 Network Loads

We recruit an experienced gamer, and ask him to play each game using different cloud gaming systems.
Every game session lasts for 10 minutes, and the network packets are captured by Wireshark. For a
fair comparison, the player is asked to follow two guidelines. First, he shall visit as many areas as
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

GamingAnywhere—The First Open Source Cloud Gaming System • 1:15

GA Onlive
(a)

U
pl

in
k

B
it

R
at

e
(M

bp
s)

0.
00

0.
02

0.
04

0.
06

Batman
FEAR
DOW

GA Onlive
(b)

U
pl

in
k

P
ac

ke
t R

at
e

(p
kt

/s
ec

)
0

20
40

60
80

GA Onlive
(c)

U
pl

in
k

P
ay

lo
ad

 S
iz

e
(b

yt
es

)
0

20
40

60
80

12
0

GA Onlive
(d)

D
ow

nl
in

k
B

it
R

at
e

(M
bp

s)
0

1
2

3
4

5

GA Onlive
(e)

D
ow

nl
in

k
P

ac
ke

t R
at

e
(p

kt
/s

ec
)

0
20

0
40

0
60

0

GA Onlive
(f)

D
ow

nl
in

k
P

ay
lo

ad
 S

iz
e

(b
yt

es
)

0
20

0
60

0
10

00

Fig. 11. Network loads incurred by the considered cloud gaming systems.

GA OnLive

U
pl

in
k

bi
tr

at
e

(K
bp

s)
0

10
20

30
40

50
60

70

No actions performed
Normal gameplay

Fig. 12. The average uplink traf-
fic rate when DOW is being actively
played and kept idle.

Packet size (bytes)

0.01

0.05

0.10

0.50

1.00

5.00

10.00

P
ac

ke
t r

at
e

(p
kt

/s
)

72 76 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

13
2

14
8

16
4

18
0

19
6

21
2

No actions performed
Normal gameplay

Fig. 13. The uplink packet sizes generated by the OnLive client when DOW is being
played and kept idle (without players’ actions).

possible and fight the opponents as in normal game plays. Second, he shall repeat his actions and
trajectories as much as possible.

Results. Figure 11 plots the uplink and downlink traffic characteristics with 95% confidence inter-
vals. Figures 11(a)–11(c) reveal that GamingAnywhere incurs a much lower uplink traffic loads com-
pared to OnLive. Figures 11(d)–11(f) reveal that the downlink bit rates of GamingAnywhere are 2–3
Mbps, where those of OnLive are 3–5 Mbps. We notice that OnLive does not support user-configurable
video encoding rates and parameters, which prevents them from being an experiment testbed like
GamingAnywhere. Last, as we will see in Figures 16 and 17, even when we set the encoding bit rate of
GamingAnywhere to be 3 Mbps, GamingAnywhere still outperforms OnLive in terms of video quality.
The gap will be even larger if we increase GA’s encoding bit rate.

We make another observation on Figure 11(d): Given that we set the encoding bit rate at 3 Mbps,
the download bit rate should never be smaller than that. We took a closer look and found that, with
GamingAnywhere, only Batman achieves 50 fps; FEAR and DOW only achieve 35–42 fps, which leads

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

1:16 • C.-Y. Huang et al.

to lower download bit rates and may result in irregular playouts. Our in-depth analysis shows that,
unlike Batman, both FEAR and DOW use Direct3D multisampling surfaces, which cannot be locked for
memory copies. More specifically, an additional non-multisampling surface and an extra copy operation
are required for FEAR and DOW, which in turn slightly affects the achieved frame rates.

Another observation that seems counter-intuitive in the first glance is Figure 11(a): The OnLive
client sends out much more traffic to the server compared with GamingAnywhere. Since the uplink
traffic should comprise only players’ control actions, it seems unreasonable to have such a huge differ-
ence in uplink traffic between OnLive and GamingAnywhere. Our further analysis reveals that OnLive
generates uplink traffic even when no gameplay actions are performed. Taking DOW as an example,
we ask a gamer to play the game normally for 3 minutes and leave the game idle for another 3 minutes.
We plot the average uplink traffic rate in Figure 12. The graph shows that OnLive generates around 40
kbps uplink traffic even when no gameplay actions are performed. Moreover, the differences between
the idle and normal gameplay periods are 20 kbps and 30 kbps on GamingAnywhere and OnLive re-
spectively, which indicate the rate of the traffic corresponding to players’ actions. We further dissect
the uplink packet sizes of OnLive. As shown in Figure 13, the OnLive client keeps sending packets
with sizes 84, 164, 212, 116, and so on no matter whether a player is performing gameplay actions or
not. More specifically, even when no gameplay actions are issued, the client sends out 40 packets per
second on average with particular packet sizes. We believe that these packets are employed for path
quality estimation and/or application-level acknowledgement purposes.

1280x720 1024x768 640x480

0
20

40
60

80
P

ro
ce

ss
in

g
de

la
y

+
 P

la
yo

ut
 d

el
ay

 (
m

s)

47
32

20

20

18

8

Processing Delay
Playout Delay

Fig. 14. Implication of resolutions on
responsiveness, sample results from
FEAR.

50 fps 25 fps 10 fps

0
10

20
30

40
50

60
70

P
ro

ce
ss

in
g

de
la

y
+

 P
la

yo
ut

 d
el

ay
 (

m
s)

27 25 25

22
16 17

Processing Delay
Playout Delay

(a)

50 fps 25 fps 10 fps

0
20

40
60

80
10

0
P

ro
ce

ss
in

g
de

la
y

+
 P

la
yo

ut
 d

el
ay

 (
m

s)

47 40 45

20
19 17

Processing Delay
Playout Delay

(b)

Fig. 15. Implication of frame capture rates on responsiveness: (a) Batman and
(b) FEAR.

5.4 Impact of Screen Setting

We next vary the screen resolution and frame capture rate. We consider three resolutions: 1280x720,
1024x768, 640x480, and three frame capture rates: 50, 25, 10 fps. Since OnLive does not support
different resolutions, we do not consider it.

Results. Figure 14 gives the impact of resolutions. This figure shows that GamingAnywhere scales
well with screen resolutions, in terms of PD and OD, while Figure 15 presents the PD and OD, which
shows that GamingAnywhere achieves stable PD and OD under different frame capture rates.

5.5 Streaming Quality under Different Network Conditions

The network conditions are the keys for high-quality video streaming, and we use dummynet to vary
ND between 0–600 ms, packet loss rate between 0–10%, and bandwidth between 1–6 Mbps. We also
include experiments with unlimited bandwidth. For OnLive, the ND in the Internet is already 130 ms
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

GamingAnywhere—The First Open Source Cloud Gaming System • 1:17

GA_UDP GA_TCP OnLive

(a) Delay

P
S

N
R

 (
dB

)
0

10
20

30
40

50
60

0 ms
150 ms

300 ms
450 ms

600 ms

GA_UDP GA_TCP OnLive

(b) Packet loss

P
S

N
R

 (
dB

)
0

10
20

30
40

50
60

0%
2.5%

5%
7.5%

10%

GA_UDP GA_TCP OnLive

(c) Bandwidth

P
S

N
R

 (
dB

)
0

10
20

30
40

50
60

Unlimited
6 Mbps

4 Mbps
2 Mbps

1 Mbps

Fig. 16. Achieved video quality in PSNR under different network conditions.

GA_UDP GA_TCP OnLive

(a) Delay

S
S

IM
0.

4
0.

6
0.

8
1.

0
1.

2

0 ms
150 ms

300 ms
450 ms

600 ms

GA_UDP GA_TCP OnLive

(b) Packet loss

S
S

IM
0.

4
0.

6
0.

8
1.

0
1.

2

0%
2.5%

5%
7.5%

10%

GA_UDP GA_TCP OnLive

(c) Bandwidth

S
S

IM
0.

4
0.

6
0.

8
1.

0
1.

2

Unlimited
6 Mbps

4 Mbps
2 Mbps

1 Mbps

Fig. 17. Achieved video quality in SSIM under different network conditions.

and thus we cannot report the results of zero ND. Two video quality metrics, PSNR [Wang et al. 2001,
p. 29] and Structural Similarity (SSIM) [Wang et al. 2004], are adopted. We run GamingAnywhere on
both UDP and TCP in this experiment.

Results. Figures 16 and 17 present the PSNR and SSIM values, respectively. We make four observa-
tions. First, ND does not affect the video quality too much (Figures 16(a) and 17(a)). Second, Gaming-
Anywhere achieves much higher video quality than OnLive: up to 5 dB (PSNR) and 0.05 (SSIM) gaps
are observed. Third, GamingAnywhere over UDP suffers from quality drops when packet loss rate
is nontrivial, as illustrated in Figures 16(b) and 17(b). This can be attributed to the missing error
resilience mechanism in GamingAnywhere. This issue can be coped with running GamingAnywhere
over TCP, which leads to stable video quality even under nontrivial packet loss rate, as shown in Fig-
ures 16(b) and 17(b). Last, Figures 16(c) and 17(c) show that the video quality of GamingAnywhere
suddenly drops when the bandwidth is smaller than the encoding bit rate of 3 Mbps. In summary,
GamingAnywhere performs well under diverse network conditions, except: (i) when the available band-
width is lower than the specified video encoding bit rate and (ii) when the packet loss rate is high while
GamingAnywhere runs on UDP. These advantages of GamingAnywhere are achieved under a rather
low video coding rate at 3 Mbps (see Figure 11(d)).

5.6 Performance Profiling

We also profile the performance of GamingAnywhere server to identify possible performance bottle-
necks. We use oprofile [Levon 2013] and lttng [Desnoyers et al. 2013] to conduct the measurements
on Ubuntu Linux with the game Cube 2: Sauerbraten [van Oortmerssen 2013], which is a 3D fps game
based on SDL and OpenGL. We use oprofile to retrieve performance counters at the function level

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

1:18 • C.-Y. Huang et al.

without modifying and recompiling the source code; meanwhile, we use lttng to obtain the usage of
kernel functions and CPU counters. To observe performance overheads of the GamingAnywhere server,
we play the selected game with two different setups. In the first setup, we play the game locally without
the involvement of any cloud gaming technologies. In the second setup, we launch the game with the
GamingAnywhere event-driven server and play the game remotely. In each game session, we choose
the single player private “Run N’ Gun Part I” campaign, kill five monsters, and then quit the game.
We play each game setup three times and the average game play length is approximately 1 minute.

Results. The detailed profiling results are given in Appendix B due to the space limitations. We only
summarize our observations in this section. When playing with GamingAnywhere, almost all the per-
formance counters raise significantly. This is because many GamingAnywhere server operations, such
as video frame capture (via libdricore.so), video encoding (in libx264.so), and color space conversion
(in libga.so), require significant memory accesses and CPU time. Even so, the profiling results indi-
cate that these operations are performed efficiently in that the branch miss rate and dTLB store miss
rate with GamingAnywhere are even better (i.e., lower) than those without GamingAnywhere. The re-
sults also reveal that GamingAnywhere does not incur much overhead on the system kernel; actually,
the number of system calls with GamingAnywhere is even less than that without GamingAnywhere.
A closer look shows that the local game session invokes a large number of ioctl system calls, which
should be used to handle inputs from control devices and outputs to the audio and graphics device.
While a remote game session with GamingAnywhere still requires input handling, it does not need to
output audio and graphics to local devices thus the ioctl system calls are largely eliminated. We also
identify that GamingAnywhere makes a lot of futex system calls for synchronizing mutexes among
threads. This is because GamingAnywhere adopts a multi-threaded architecture to manage the game
screen capture, encoding, and packetization pipeline, and some of the threads inevitably require ac-
cesses to shared buffers, thus mutexes are used to ensure the synchronization among threads.

5.7 Multiple GamingAnywhere Instances

So far we are running a single instance of GamingAnywhere on a game server. Since GamingAnywhere
does not exclusively use any input/output device, it is possible to run multiple instances of Gaming-
Anywhere on the same server so that the server can serve multiple players at the same time. Using
the same testbed (Windows 7 desktops with Intel 2.67 GHz i7 processors), we run 1, 2, 3, and 4 in-
stances of GamingAnywhere on the game Cube 2: Sauerbraten with each instance serving one client,
and measure the average processing delays of the instance(s).

Results. Our experiments reveal that the processing delays of the GamingAnywhere server increase
linearly along with the increasing number of simultaneous instances. We plot the figure in Appendix B
due to the space limitations. This indicates that GamingAnywhere scales well in terms of multiple
instances and that GamingAnywhere is capable to be the cloud gaming solution hosting large-scale
remote gaming services.

6. CONCLUSION

We presented GamingAnywhere—the first open cloud gaming system, which is designed to be open, ex-
tensible, portable, and fully configurable. Via extensive experiments, we have shown that GamingAny-
where significantly outperforms a well-known, commercial, cloud gaming system: OnLive. Compared
to GamingAnywhere, for example, OnLive suffers from up to 3 times higher processing delays, and 5
dB lower video quality. GamingAnywhere: (i) incurs lower network loads in both uplink and downlink
directions, (ii) scales well with screen resolutions and frame capture rates, and (iii) adapt to diverse
network conditions (except some boundary cases). We expect that cloud game developers, cloud service
providers, system researchers, and individual users will use GamingAnywhere to set up complete cloud
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

GamingAnywhere—The First Open Source Cloud Gaming System • 1:19

gaming testbeds for different purposes. In fact, a few weeks after making GamingAnywhere online at
http://gaminganywhere.org in April 2013, we have received many inquiries. We firmly believe that
the release of GamingAnywhere will stimulate more research innovations on cloud gaming systems,
or multimedia streaming applications in general.

For example, this article does not address the deployment problem of GamingAnywhere, in which
cloud game hosting companies have to find the best tradeoff between the hardware and bandwidth
investment and achieved gaming experience. Techniques for cloud management, such as resource al-
location and Virtual Machine (VM) migration, are critical to the success of commercial deployments.
These cloud management techniques need to be optimized for cloud games, e.g., the VM placement
decisions need to be aware of gaming experience. Tiered cloud platforms may also be used in real de-
ployment, e.g., relatively delay-tolerant games may be served by servers in further-away large data
centers, while delay-sensitive games may be served by servers in edge clouds for high responsiveness.

On another direction, GamingAnywhere attempts to transparently support cloud games, i.e., with-
out any code customization, and thus works with almost all computer games. A design alternative
is to provide APIs for game developers to call, which may enable more optimization opportunities
and reduce overhead. For example, if game developers adopt the APIs, a cloud gaming platform like
GamingAnywhere will no longer need to hook into functions in the operating systems, which results
in lower overhead. Another more aggressive, although complex, optimization strategy is to divide the
game engine into multiple components and dynamically distribute these components on multiple cloud
servers based on the demanded and available resources of the games and servers. While such optimiza-
tion is out of the scope of this article, GamingAnywhere is an enabler of designing, implementing, and
evaluating such design issues in comprehensive cloud gaming platforms.

REFERENCES

Yu-Chun Chang, Po-Han Tseng, Kuan-Ta Chen, and Chin-Laung Lei. 2011. Understanding The Performance of Thin-Client
Gaming. In Proceedings of IEEE CQR 2011.

Kuan-Ta Chen, Yu-Chun Chang, Po-Han Tseng, Chun-Ying Huang, and Chin-Laung Lei. 2011. Measuring The Latency of Cloud
Gaming Systems. In Proceedings of ACM Multimedia 2011.

Kuan-Ta Chen, Polly Huang, and Chin-Laung Lei. 2009. Effect of Network Quality on Player Departure Behavior in Online
Games. IEEE Transactions on Parallel and Distributed Systems 20, 5 (May 2009), 593–606.

Y. Chen, C. Chang, and W. Ma. 2010. Asynchronous Rendering. In Proc. of ACM SIGGRAPH symposium on Interactive 3D
Graphics and Games (I3D’10). Washington, DC.

Sharon Choy, Bernard Wong, Gwendal Simon, and Catherine Rosenberg. 2012. The Brewing Storm in Cloud Gaming: A Mea-
surement Study on Cloud to End-User Latency. In Proceedings of IEEE/ACM NetGames 2012.

M. Claypool and K. Claypool. 2006. Latency and Player Actions in Online Games. Commun. ACM 49, 11 (November 2006),
40–45.

Roger L. Costello. 2007. Building web services the rest way. xFront - Tutorial and Articles on XML and Web Technologies.
(2007). http://www.xfront.com/REST-Web-Services.html.

Mathieu Desnoyers, Julien Desfossez, and David Goulet. 2013. Linux Trace Toolkit - next generation. LTTng Project. (2013).
https://lttng.org/.

EA 2012. Electronic Arts Buys Online Gaming Studio ESN, The Developers Behind Battlefield’s Battlelog Online Social Net-
work. (September 2012). http://techcrunch.com/2012/09/26/electronic-arts.

P. Eisert and P. Fechteler. 2008. Low Delay Streaming of Computer Graphics. In Proc. of IEEE International Conference on
Image Processing (ICIP’08). San Diego, CA, 2704–2707.

FFmpeg project. 2013. ffmpeg. (2013). http://ffmpeg.org/.
Roy Thomas Fielding. 2000. Architectural Styles and the Design of Network-based Software Architectures. Ph.D. Dissertation.

University of California, Irvine.
GaiKai 2012. GaiKai Web Page. (July 2012). http://www.gaikai.com/.
F. Giesen, R. Schnabel, and R. Klein. 2008. Augmented Compression for Server-Side Rendering. In Proc. of International Fall

Workshop on Vision, Modeling, and Visualization (VMV’08). Konstanz, Germany.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

20 • C.-Y. Huang et al.

T. Henderson. 2003. The Effects of Relative Delay in Networked Games. Ph.D. Dissertation. Department of Computer Science,
University of London.

O. Holthe, O. Mogstad, and L. Ronningen. 2009. Geelix LiveGames: Remote Playing of Video Games. In Proc. of IEEE Consumer
Communications and Networking Conference (CCNC’09). Las Vegas, NV.

Chun-Ying Huang, Cheng-Hsin Hsu, Yu-Chun Chang, and Kuan-Ta Chen. 2013. GamingAnywhere: An Open Cloud Gaming
System. In Proc. of ACM MMSys 2013.

A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David, J. Laulajainen, R. Carmichael, V. Poulopoulos, A. Laikari, P. Perala,
A. Gloria, and C. Bouras. 2009. Platform for distributed 3D Gaming. International Journal of Computer Games Technology
2009 (January 2009), 1:1–1:15.

A. Lai and J. Nieh. 2006. On the Performance of Wide-Area Thin-Client Computing. ACM Transactions on Computer Systems
24, 2 (May 2006), 175–209.

Sam Lantinga. 2013. Simple DirectMedia Layer. (2013). http://www.libsdl.org/.
Yeng-Ting Lee, Kuan-Ta Chen, Han-I Su, and Chin-Laung Lei. 2012. Are All Games Equally Cloud-Gaming-Friendly? An

Electromyographic Approach. In Proceedings of IEEE/ACM NetGames 2012.
John Levon. 2013. OProfile - A System Profiler for Linux. (2013). http://oprofile.sourceforge.net/.
Inc. Live Networks. 2013. LIVE555 Streaming Media. (2013). http://live555.com/liveMedia/.
LogMeIn 2012. LogMeIn Web Page. (July 2012). https://secure.logmein.com/.
Microsoft. 2012. Flipping Surfaces (Direct3D 9). Windows Dev Center - Desktop. (September 2012). http://msdn.microsoft.com/

en-us/library/windows/desktop/bb173393\%28v=vs.85\%29.aspx.
J. Nieh, S. Yang, and N. Novik. 2003. Measuring Thin-Client Performance Using Slow-Motion Benchmarking. ACM Transactions

on Computer Systems 21, 1 (February 2003), 87–115.
OnLive 2012. OnLive Web Page. (July 2012). http://www.onlive.com/.
K. Packard and J. Gettys. 2003. X Window System Network Performance. In Proc. of USENIX Annual Technical Conference

(ATC’03). San Antonio, TX, 206–218.
H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. 2003. RTP: A Transport Protocol for Real-Time Applications. RFC

3550 (Standard). (July 2003). http://www.ietf.org/rfc/rfc3550.txt.
H. Schulzrinne, A. Rao, and R. Lanphier. 1998. Real Time Streaming Protocol (RTSP). RFC 2326 (Proposed Standard). (April

1998). http://www.ietf.org/rfc/rfc2326.txt.
S. Shi, C. Hsu, K. Nahrstedt, and R. Campbell. 2011. Using Graphics Rendering Contexts to Enhance the Real-Time Video

Coding for Mobile Cloud Gaming. In Proc. of ACM Multimedia’11. Scottsdale, AZ, 103–112.
Sony 2012. Cloud Gaming Adoption is Accelerating . . . and Fast! (July 2012). http://www.nttcom.tv/2012/07/09/

cloud-gaming-adoption-is-acceleratingand-fast/.
StreamMyGame 2012. StreamMyGame Web Page. (July 2012). http://streammygame.com/.
Andrew Stuart Tanenbaum. 2002. Computer Networks (4th ed.). Prentice Hall Professional Technical Reference.
TeamViewer 2012. TeamViewer Web Page. (July 2012). http://www.teamviewer.com.
N. Tolia, D. Andersen, and M. Satyanarayanan. 2006. Quantifying Interactive User Experience on Thin Clients. IEEE Computer

39, 3 (March 2006), 46–52.
UltraVNC 2012. UltraVNC Web Page. (July 2012). http://www.uvnc.com/.
Wouter van Oortmerssen. 2013. Cube 2: Sauerbraten. (2013). http://sauerbraten.org/.
VideoLAN. 2013. VLC media player. Official page for VLC media player, the Open Source video framework!. (2013). http:

//www.videolan.org/vlc/.
Y. Wang, J. Ostermann, and Y. Zhang. 2001. Video Processing and Communications. Prentice Hall.
Z. Wang, L. Lu, and A. Bovik. 2004. Video Quality Assessment Based on Structural Distortion Measurement. Signal Processing:

Image Communication 19, 2 (February 2004), 121–132.
WebM 2013. The WebM Project Web Page. (April 2013). http://www.webmproject.org.
D. Winter, P. Simoens, L. Deboosere, F. Turck, J. Moreau, B. Dhoedt, and P. Demeester. 2006. A Hybrid Thin-Client Protocol for

Multimedia Streaming and Interactive Gaming Applications. In Proc. of ACM NOSSDAV 2006. Newport, RI.
A. Wong and M. Seltzer. 1999. Evaluating Windows NT Terminal Server Performance. In Proc. of USENIX Windows NT

Symposium (WINSYM’99). Seattle, WA, 145–154.
x264 2012. x264 Web Page. (July 2012). http://www.videolan.org/developers/x264.html.
S. Zander, I. Leeder, and G. Armitage. 2005. Achieving Fairness in Multiplayer Network Games through Automated Latency

Balancing. In Proc. of ACM SIGCHI ACE 2005. Valencia, Spain, 117–124.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

GamingAnywhere—The First Open Source Cloud Gaming System • 21

Received May 2013; revised September 2013; accepted October 2013

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

Online Appendix to:
GamingAnywhere—The First Open Source Cloud
Gaming System
CHUN-YING HUANG, National Taiwan Ocean University, Taiwan
KUAN-TA CHEN, Academia Sinica, Taiwan
DE-YU CHEN, Academia Sinica, Taiwan
HWAI-JUNG HSU, Academia Sinica, Taiwan
CHENG-HSIN HSU, National Tsing Hua University, Taiwan

A. REAL-TIME VIDEO ENCODING PARAMETERS

GamingAnywhere supports x264 [x264 2012] and vpxenc [WebM 2013] encoders for H.264/AVC and
VP8 video encoding. These encoders are fairly comprehensive and provide many parameters to users
for trading off the bit rate, video quality and encoding complexity. In this section, we conduct extensive
experiments on an Intel i7 PC to find the best tradeoff settings for x264 and vpxenc. We use PSNR
as the video quality metric, and fps as the computational complexity metric. Typically, higher PSNR
(higher video quality) comes with lower fps (higher computational complexity). Our goal is to achieve
∼60 fps at 720p (1020x720) and the highest rate-distortion (R-D) performance. We record 10-min game
plays in YUV format from three games: Batman, FEAR, and DOW, which are chosen from three differ-
ent game genres (see Section 5.1). We then encode the raw videos with various parameters and report
our observations.

A.1 x264 Encoding Parameters

Mandatory parameters for real-time encoding. Several parameters are required for real time
x264 encoding. First, we need to disable the bi-directional (B) frames. We also need to disable the looka-
head buffers, which are used for frame type (I, P, or B) decision and frame-level multi-threading. Dis-
abling these two coding tools can be done by a convenience flag --tune zerolatency. Second, we need
to enable slice-level multi-threading to leverage multi-core CPUs without incurring additional delay.
Slices are essentially disjoint regions extracted from each video frame. Slice-level multi-threading cuts
each frame into t slices, and allocates a thread to encode each slice. x264 supports: (i) --sliced-threads
to enable slice-level multi-threading, (ii) --slices to specify the number of slices, and (iii) --threads
to control the number of threads. Third, x264 supports intra refresh to control error propagation due to
packet losses. With intra refresh, each frame consists of a column of intra-coded macroblocks, and this
intra-coded column moves along the time. x264 allows intra refresh via the flag --intra-refresh.

Implications of other parameters. We exercise several other parameters and present their im-
plications on video quality and computational complexity. --preset is used to select a predefined com-
plexity level, ranging from ultrafast to very slow; --bitrate is used to set the target bit rate; --me is
used to select the motion estimation algorithms, which can be diamond, hexagonal, multi-hexagonal,
exhaustive, and Hadamard exhaustive search, from low to high complexity; and lastly, --merange spec-
ifies the motion vector search range, from 4 to 64 pixels. Moreover, we consider the number of threads

c⃝ 2010 ACM 1551-6857/2010/05-ART1 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

App–2 • C.-Y. Huang et al.

Batman FEAR DOW

E
nc

od
in

g
F

ra
m

e
R

at
e

(F
P

S
)

0
15

0
30

0
45

0

Ultrafast
Superfast
Veryfast
Faster

Fast
Medium
Slow
Slower

(a)
Batman FEAR DOW

E
nc

od
in

g
F

ra
m

e
R

at
e

(F
P

S
)

0
50

10
0

15
0 Diamond

Hexagonal
Multi.Hex.

Exhaustive
Hadamard

(c)
Batman FEAR DOW

E
nc

od
in

g
F

ra
m

e
R

at
e

(F
P

S
)

0
60

12
0

18
0 1 Th.

2 Th.
4 Th.

6 Th.
8 Th.

(e)

Batman FEAR DOW

V
id

eo
 Q

ua
lit

y
in

 P
S

N
R

 (
dB

)
30

35
40

45
50

Ultrafast
Superfast
Veryfast
Faster

Fast
Medium
Slow
Slower

(b)
Batman FEAR DOW

V
id

eo
 Q

ua
lit

y
in

 P
S

N
R

 (
dB

)
30

35
40

45
50

Diamond
Hexagonal
Multi.Hex.

Exhaustive
Hadamard

(d)
Batman FEAR DOW

V
id

eo
 Q

ua
lit

y
in

 P
S

N
R

 (
dB

)
30

35
40

45
50

1 Th.
2 Th.
4 Th.

6 Th.
8 Th.

(f)

Fig. 18. Results from x264. Different presets: (a) encoding frame rates and (b) achieved video quality. Different motion esti-
mation algorithms: (c) encoding frame rates and (d) achieved video quality. Implications of sliced-level threading: (e) encoding
frame rates and (f) achieved video quality.

t ∈ {1, 2, 4, 6, 8}, and GoP size g ∈ {12, 24, 48, 96, 192, 384}. The GoP size is set by --keyint. If not other-
wise specified, we employ --preset fast, --bitrate 1000, --me hex, --merange 16, t = 4, and g = 384.

We plot the results from different presets in Figures 18(a) and 18(b). We find that very fast pre-
set leads to 100+ fps in all considered games. Moreover, moving from very fast to fast only results in
up to 0.46 dB quality improvement, at the cost of at least 60 fps loss. Based on this observation, we
recommend using very fast. We present the results from different motion estimation algorithms in
Figures 18(c) and 18(d). Figure 18(d) shows that different algorithms lead to almost the same video
quality. Figure 18(c) reveals that the exhaustive search algorithms may reduce the encoding frame
rate by about 50%, for virtually no quality improvement. Hence, we recommend the diamond search
algorithm (dia). We also find that increasing the search range (16 pixels by default) results in negli-
gible impact on video quality and encoding complexity. We give the results from different number of
threads in Figures 18(e) and 18(f). Figure 18(e) reveals that more slice-level threads result in higher
encoding frame rates. Figure 18(f) shows that slice-level multi-threading leads to insignificant qual-
ity degradation. For example, increasing the number of threads from 1 to 4 results in a small video
quality degradation of at most 0.19 dB, while the encoding frame rate is almost doubled. Hence, we
recommend to use 4 threads. We plot the video quality with different GoP size in Figure 19, which
shows that Batman and FEAR are less sensitive to the GoP size. DOW is more vulnerable to smaller
GoP sizes, because the background of Real-Time Strategy (RTS) games does not move rapidly, and
thus offers more inter-frame redundancy. We find that the GoP size does not affect the computational
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

GamingAnywhere—The First Open Source Cloud Gaming System • App–3

Batman FEAR DOW

V
id

eo
 Q

ua
lit

y
in

 P
S

N
R

 (
dB

)

30
32

34
36

38
40

42

GoP

12
24
48
96
192
384

Fig. 19. Results from x264. Quality degrada-
tion due to smaller GoP size.

0 500 1500 2500

25
30

35
40

45

Bit Rate (Kbps)

V
id

eo
 Q

ua
lit

y
in

 P
S

N
R

 (
dB

)

(a)

Batman
FEAR
DOW

0 500 1500 2500

0
50

10
0

15
0

20
0

Bit Rate (Kbps)

E
nc

od
in

g
F

ra
m

e
R

at
e

(F
P

S
)

(b)

Batman
FEAR
DOW

Fig. 20. Tradeoffs between rate and: (a) quality and (b) complexity. Results
from x264.

complexity of x264. The best GoP size depends on the network condition, and we chose a medium GoP
size of 48.

Performance of x264. We report the complexity-rate-distortion relation under the recommended
encoding parameters:

--profile main --preset faster --tune zerolatency --bitrate $r --ref 1 --me dia

--merange 16 --intra-refresh --keyint 48 --sliced-threads --slices 4 --threads 4

--input-res 1280x720,

where $r is the encoding rate. We vary $r between 250 and 3000 kbps and plot the rate-complexity and
rate-quality curves in Figure 20. Figure 20(a) reveals that, for Batman, FEAR, and DOW, we achieve
a good video quality of 35 dB at respective bit rates of only about 250, 800, and 1500 kbps. For an
excellent video quality of 40 dB [Wang et al. 2001, p. 29], Batman and FEAR require bit rates of about
800 and 2000 kbps, while DOW demands slightly over 3000 kbps. These bit rates are widely available
in modern access networks. Last, Figure 20(b) reports the encoding frame rates under different bit
rates. This figure reveals that for a video quality of 35 dB, the encoding frame rates are 160+, 130+,
and 140+, which are much higher than the rendering frame rates of most games.

A.2 vpxenc Encoding Parameters

Mandatory parameters for real-time encoding. We present the required parameters for real-time
vpxenc encoding in the following. First, we need to enable one-pass encoding (instead of two-pass en-
coding) using --passes=1. Second, we set --end-usage=cbr to use CBR (constant bit rate) encoding,
which reduces the rate fluctuations and thus is more suitable to real-time streaming. Third, real-time
encoding dictates zero buffering, which is achieved by --buf-initial-sz=0, --buf-optimal-sz=0,

--buf-sz=0. Fourth, we enable multi-threading by (i) --threads to specify the number of threads and
(ii) --token-parts to specify the number of partitions, where each partition may be encoded by differ-
ent entropy encoders (in different threads). We set the number of partitions to its maximal value 8,
and vary the number of threads.

Implications of other parameters. We study how the parameters affect video quality and com-
putational complexity. vpxenc exposes fewer encoding parameters, compared to x264. vpxenc supports
3 modes and 23 levels that lead to different tradeoffs of video quality and computational complex-
ity. The three modes are: --best, --good, and --rt, where good and rt have 6 and 16 levels, respec-
tively. The 16 levels of mode rt specify a target CPU usage (of vpxenc), from 0 to 100%. We consider

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

App–4 • C.-Y. Huang et al.

Batman FEAR DOW
(a)

E
nc

od
in

g
F

ra
m

e
R

at
e

(F
P

S
)

0
50

15
0

25
0

RT (100%)
Good (5)
Good (4)
Good (3)

Good (2)
Good (1)
Good (0)
Best

Batman FEAR DOW
(c)

E
nc

od
in

g
F

ra
m

e
R

at
e

(F
P

S
)

0
20

60
10

0
14

0

1 Th.
2 Th.
4 Th.

6 Th.
8 Th.

Batman FEAR DOW
(e)

E
nc

od
in

g
F

ra
m

e
R

at
e

(F
P

S
)

0
20

40
60

80

Gop=12
24
48

96
192
384

Batman FEAR DOW
(b)

V
id

eo
 Q

ua
lit

y
in

 P
S

N
R

 (
dB

)
30

35
40

45

RT (100%)
Good (5)
Good (4)
Good (3)

Good (2)
Good (1)
Good (0)
Best

Batman FEAR DOW
(d)

V
id

eo
 Q

ua
lit

y
in

 P
S

N
R

 (
dB

)
30

35
40

45

1 Th.
2 Th.
4 Th.

6 Th.
8 Th.

Batman FEAR DOW
(f)

V
id

eo
 Q

ua
lit

y
in

 P
S

N
R

 (
dB

)
25

30
35

40
45

50 Gop=12
24
48

96
192
384

Fig. 21. Results from vpxenc. Different presets: (a) encoding frame rates and (b) achieved video quality. Different motion
estimation algorithms: (c) encoding frame rates and (d) achieved video quality. Implications of sliced-level threading: (e) encoding
frame rates and (f) achieved video quality.

0 500 1500 2500

25
30

35
40

45

Bit Rate (Kbps)

V
id

eo
 Q

ua
lit

y
in

 P
S

N
R

 (
dB

)

(a)

Batman
FEAR
DOW

0 500 1500 2500

0
50

10
0

15
0

20
0

Bit Rate (Kbps)

E
nc

od
in

g
F

ra
m

e
R

at
e

(F
P

S
)

(b)

Batman
FEAR
DOW

Fig. 22. Tradeoffs between rate and: (a) quality and (b) complexity. Re-
sults from vpxenc.

1 2 3 4
Number of instances

A
ve

ra
ge

 p
ro

ce
ss

in
g

de
la

y
(m

s)
0

10
20

30
40

50
60

27

38

54

67

Fig. 23. Processing delays of multiple
GamingAnywhere instances running the
game Cube 2: Sauerbraten.

7 encoding modes/levels in total, best, good(0), good(1), . . . , good(5), and rt(100%), from high to low
complexity. --target-bitrate sets the target rate, and --kf-max-dist sets the maximal GoP size.
If not otherwise specified, we employ --good, --cpu-used=4, --target-bitrate=100, --threads 4,

--kf-max-dist 384.
We plot the results from different models/levels in Figures 21(a) and 21(b). We find that vpxenc only

achieves ≤ 50 fps, except with good(5) (--good and --cpu-used=5). Since the video quality drop from
good(4) to good(5) is negligible, we recommend to use good(5). We present the results from different
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

GamingAnywhere—The First Open Source Cloud Gaming System • App–5

Table I. Profiling summary for Cube 2: Sauerbraten — Without and with GamingAnywhere
Local gameplay (without GA) Remote gameplay (with GA)

CPU cycles 66,263,040,386 (100%) 613,822,039,953 (100%)
consumed by 22.80% libdricore.so 47.99% libdricore.so

16.02% sauerbraten† 20.48% libx264.so

13.07% [kernel] 12.27% libga.so

12.65% i965 dri.so 4.92% libc.so

8.84% libc.so 3.54% [kernel]

5.61% libjpeg.so 2.42% sauerbraten

Branches 9,816,197,930 59,332,965,017
Branch misses 274,832,612 1,047,463,987

Branch miss rate 2.79% 1.76%
Cache misses 57,157,352 1,018,626,894

dTLB loads 22,944,538,803 195,569,272,710
dTLB stores 12,663,900,914 90,938,730,599

dTLB store misses 11,571,948 50,717,095
dTLB store miss rate 0.09% 0.05%
Invoked system calls 1,368,700 (100%) 804,627 (100%)

contributed by 1,083,856 (79%) ioctl 491,002 (61%) ioctl

142,145 (10%) clock gettime 68,274 (8%) clock gettime

38,403 (3%) nanosleep 65,466 (8%) futex

24,471 (2%) socketcall 51,969 (6%) nanosleep

19,152 (1%) read 31,817 (4%) socketcall
† sauerbraten is the process name of the game Cube 2: Sauerbraten.

number of threads in Figures 21(c) and 21(d). Figure 21(d) shows that the video quality drops when
there are more threads. This can be attributed to the design of multiple partitions and entropy coders—
more partitions mean less redundancy. Figure 21(c) reveals that 6 threads are required for 60 fps and
thus we recommend to use 6 threads. The impact of GoP size is shown in Figures 21(e) and 21(f).
Although we observe a tradeoff between video quality and computational complexity, the deviation is
moderate, and the best tradeoff depends on the network condition. We chose a medium GoP size of 48.

Performance of vpxenc. We report the complexity-rate-distortion relation under the recommended
encoding parameters:

--i420 -w 1280 -h 720 -p 1 -t 6 --token-parts=3 --good --cpu-used=5 --end-usage=cbr

--target-bitrate=$r --fps=30000/1000 --buf-sz=0 --buf-initial-sz=0 --buf-optimal-sz=0

--kf-max-dist=48.

We vary $r between 250 and 3000 kbps, and plot the rate-complexity and rate-quality curves in Fig-
ure 22. Figure 22(a) shows that vpxenc achieves 35 dB at bit rates of about 250, 1000, and 3000 kbps for
Batman, FEAR, and DOW, respectively. Figure 22(b) reveals that the corresponding encoding frame
rates are 170+ in all considered games. Compared to x264 (Figure 20), we found that vpxenc achieves
a slightly higher frame rates (up to 30 fps) at the expense of lower coding efficiency. Nonetheless, the
resulting bit rates are available in most access networks nowadays.

B. ADDITIONAL EXPERIMENTAL RESULTS

Table I presents the detailed profiling results. Corresponding descriptions are given in Section 5.6. Fig-
ure 23 gives the results of running multiple GamingAnywhere instances, and the detailed discussions
are given in Section 5.7.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.

