Measuring The Latency of Cloud Gaming Systems:

Kuan-Ta Chent, Yu-Chun Chang'?, Po-Han Tseng!,
Chun-Ying Huang?, and Chin-Laung Lei?

nstitute of Information Science, Academia Sinica
2Department of Electrical Engineering, National Taiwan University
3Department of Computer Science, National Taiwan Ocean University

ABSTRACT

Cloud gaming, i.e., real-time game playing via thin clients,
relieves players from the need to constantly upgrade their
computers and deal with compatibility issues when playing
games. As a result, cloud gaming is generating a great deal
of interest among entrepreneurs and the public. However,
given the large design space, it is not yet known which plat-
forms deliver the best quality of service and which design
elements constitute a good cloud gaming system.

This study is motivated by the question: How good is
the real-timeliness of current cloud gaming systems? To ad-
dress the question, we analyze the response latency of two
cloud gaming platforms, namely, OnLive and StreamMy-
Game. Our results show that the streaming latency of On-
Live is reasonable for real-time cloud gaming, while that of
StreamMyGame is significantly longer with identical screen
resolutions, given that StreamMyGame is running on an In-
tel Core i7 desktop PC. We believe that our measurement
approach can be generally applied to PC-based cloud gam-
ing platforms, and that it will further the understanding of
such systems and lead to improvements.

Categories and Subject Descriptors

C.4 [Performance of Systems]|: Measurement techniques;
J.7 [Computers in Other Systems|: Command and con-
trol, Consumer products, Real time; K.8.0 [Personal Com-
puting]: General—Games

General Terms

Measurement, Performance

1. INTRODUCTION

Thin clients have become increasingly popular in recent
years, primarily because of the high penetration rate of broad-
band Internet access and the use of cloud computing tech-
nology to build large-scale data centers. The massive com-
putation and storage resources of data centers enable users

*Area chair: Wei Tsang Ooi

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MM’11, November 28—-December 1, 2011, Scottsdale, Arizona, USA.
Copyright 2011 ACM 978-1-4503-0616-4/11/11 ...$10.00.

to shift their workload to remote servers. As a result, thin
clients are more convenient and also more powerful (with
the supply from remote servers) than traditional fat clients.
Thus, today, it is not uncommon for people work and play
by accessing remote computers via thin clients.

Although the advantages of thin clients have been demon-
strated in many applications, computer games in particular
have benefited from the advances in the thin client tech-
nology. One of the reasons is that the overhead of setting
up a game can be significant because game software is be-
coming increasingly complex. As a result, players are often
restricted to one computer and cannot play games anywhere,
anytime. In addition, trying a new game can be difficult be-
cause there may have software and hardware compatibility
issues between the game and players’ computers. Hence,
players may be faced with a dilemma of whether to upgrade
their computers or forgo the opportunity to try a new game.

Cloud gaming, i.e., real-time game playing via thin clients,
offers solutions for all the above-mentioned issues. Cloud
gaming frees players from the need to constantly upgrade
their computers as they can now play games that host on
remote servers with a broadband Internet connection and
a thin client. Here a thin client can be a lightweight PC,
a TV with a set-top box, or even a mobile device. Conse-
quently, there are no set up overheads or compatibility issues
if players wish to try a game because all the hardware and
software is provided in the data centers by the game opera-
tors. Given these potential advantages for both game devel-
opers and consumers, cloud gaming has been seen a possible
paradigm that would change the way computer games are
delivered and played.

Cloud gaming has already generated a great deal of inter-
est among entrepreneurs, venture capitalists, and the gen-
eral public. Several startup companies offer or claim to offer
cloud gaming services, such as OnLive!, StreamMyGame?,
Gaikai®, G-Cluster?, OTOY®, and T5-Labs®, though their
realizations may be very different. Some of the services are
only accessible via thin clients on a PC (either native or
browser-based applications), while others can be accessed
via a TV with a set-top box. Quite a few design alternatives
can be adopted when implementing a cloud gaming service,
such as 1) the way the existing game software is modified

http://www.onlive.com/
Zhttp://www.streammygame . com/
Shttp://www.gaikai.com/
‘http://www.gcluster. com/
Shttp://www.otoy.com/
Shttp://www.t5labs. com/

and run on the server; 2) the way the game screen is en-
coded (on the server) and decoded (on the client); 3) the way
game streaming data is delivered to the client; and 4) the
way short-term network instability is handled to maintain
the game’s responsiveness and graphical quality. Because of
the large design space of such systems, it is not yet known
which platforms deliver the best quality of service and which
design elements constitute a good cloud gaming system.

In this paper, we perform an anatomic analysis of the la-
tency of two cloud gaming platforms, namely, OnLive and
StreamMyGame. We chose them because they were the only
PC-based cloud gaming platforms on the market at the time
of writing (April 2011). Measuring the latency of cloud gam-
ing systems is challenging because most of the systems are
proprietary and closed, i.e., none of the source codes and in-
ternals of the cloud servers, game software, and thin clients
are available. In addition, cloud servers and the game soft-
ware running on them cannot be modified because they are
managed centrally by the service operators. Despite of these
restrictions, we propose a measurement methodology that
can assess the delay components of a cloud gaming system
even if the system is proprietary and closed. To the best of
our knowledge, this work is the first to anatomically analyze
the delay components of cloud gaming systems.

Our contribution of this work is two-fold: 1) We propose
a methodology for measuring the latency of cloud gaming
systems. It can be applied even if the system is closed and
not modifiable. 2) We profile two commercial cloud gaming
platforms, OnLive and StreamMyGame, and show that the
streaming latency of OnLive is reasonable for real-time cloud
gaming, while that of StreamMyGame is significantly longer
with identical screen resolutions, given that StreamMyGame
is running on an Intel Core i7 desktop PC.

The remainder of this paper is organized as follows. The
next section provides a review of related works. We present
our measurement methodology and the measured results in
Section 3. Section 4 contains our concluding remarks.

2. RELATED WORK

Nieh and Laih [4] proposed using slow-motion benchmark-
ing to evaluate the performance of several thin client plat-
forms on various tasks. Unfortunately, the technique cannot
be applied to cloud gaming systems because remote appli-
cations would have to be modified so that they could run in
slow motion. Besides, the performance metric used, i.e., the
amount of data transferred, is not sufficient to accurately
assess the temporal and spatial quality of cloud gaming ser-
vices.

3. LATENCY MEASUREMENT

3.1 Evaluated Systems

When OnLive! was introduced at the Game Developer’s
Conference in 2009, it attracted a significant amount of at-
tention from the mass media and the public. The service is
well-known partly because of its high-profile investors and
partners, including Warner Bros, AT&T, Ubisoft, Atari, and
HTC. It was released in June 2010 and now offers more than
120 games as of September 2011. OnLive’s client is avail-
able on Microsoft Windows, Mac OS X, and as a TV set-top
box. The minimum bandwidth requirement is 3 Mbps, but

an Internet connection of 5 Mbps or faster is recommended.
All the games are delivered in HDTV 720p format.

Unlike OnLive, which hosts game servers in its own data
centers, StreamMyGame® (SMG) offers software solutions
for remote game playing. The service was launched in Oc-
tober 2007 and currently supports more than 120 games on
Windows to Windows- and Linux-based clients as of Septem-
ber 2011. It supports game streaming in a variety of reso-
lutions, from 320x240 to 1920x1080 (1080p), which require
an Internet connection between 256 Kbps (320x240) and 30
Mbps (1080p). Although StreamMyGame offers a software-
based platform rather than a centralized service, we consider
it a perfect fit for this present study because we focus on the
performance of game streaming mechanisms rather than the
capacity of service providers.

Because of the architectural differences of OnLive and
SMG, their system configurations in our experiments are
not identical. The main difference is that the OnLive server
is operated by OnLive Inc., while the SMG server is oper-
ated by ourselves and installed with the SMG server software
developed by Tenomichi/SSP Ltd.

3.2 Selected Games

We used three games, namely, Lego Batman: The Videogame

(Batman), Warhammer 40,000: Dawn of War (DOW), and
F.E.A.R. 2: Project Origin (FEAR) in this work. We cho-
sen the games because they are supported by both plat-
forms and they represent three game genres. Lego Batman
is an action-adventure game, FEAR is a typical first-person
shooter (FPS) game, and Warhammer is a real-time strat-
egy (RTS) game. FPS games normally require a high rate
of game screen updates, whereas the pace of adventure and
RTS games is relatively slower with an omnipresent view-
point [3].

3.3 Anatomy of Delay Components

We segment a cloud gaming system’s response delays to
players’ commands into three components:

e Network delay (ND): the time required to deliver
a players’ command to the server and return a game
screen to the client. It is usually referred to as the
network round-trip time (RTT).

e Processing delay (PD): the difference between the
time the server receives a player’s command (from the
client) and the time it responds with a corresponding
frame after processing the command.

e Playout delay (OD): the difference between the time
the client receives the encoded form of a frame and the
time the frame is decoded and presented on the screen.

Unlike the network delay, which can be measured using tools
like ICMP ping, the processing delay (at the server) and play-
out delay (at the client) occur internally in the cloud gam-
ing system and are not accessible from outside. Our goal
is to measure both delays accurately by using only external
probes.

3.4 Response Delay Measurement

To measure the response delay (i.e., ND+PD+OD) of a
cloud gaming system, we exploit the fact that most games
support a hot key, which is used to access a menu screen
anytime during game play. The key is usually the ESC key
for computer games and the START button for console games.

Esc

to (Key event sent)

t4 (Frame displayed) .~
~

" Client
t3 (Frame received)

Server
t2 (Frame sent)

. MENU screen shown

MENU frame

Figure 1: The key events in the measurement of
the response delay of a cloud gaming platform by
invoking the menu screen.

Without loss of generality, we assume the ESC key is the hot
key for invoking the menu screen. As illustrated in Figure 1,
assuming the ESC key is pressed at time t; and the menu
screen is shown to the user at time t4, the time difference
(ta — to) corresponds to the response delay of the ESC key.
However, the processing delay (t2 —t1) and the playout delay
(ta — t3) are not visible and cannot be measured directly.

To determine the response delay, we utilize the hooking
mechanism” in Windows to inject our instrumentation code
into the OnLive and SMG clients. We use the detours li-
brary to intercept the IDirect3dDevice9::EndScene () func-
tion, which is called when a Direct3D application finishes
drawing graphics on a hidden surface and is about to present
the surface on the screen. We then use the following proce-
dure to measure the response delay:

1. Simulate an ESC key press event by calling the Send-
Input () function at time ¢o.

2. Each time the game screen is updated, we examine
the colors of a specific set of pixels to determine if the
menu screen is displayed.

3. Wait until the menu screen appears (and note the time
as t4).

We can therefore calculate the response delay by subtract-
ing to from t48. Each run of the procedure yields a sample
of the response delay; thus, we can repeatedly execute the
procedure to obtain a set of response delay samples.

3.5 Response Delay Decomposition

During the experiments, we periodically measure the net-
work round-trip time using ICMP ping as ND samples. Since
we have ND and the sum of ND, PD, and OD constitutes the
response delay, we only need to determine either PD (pro-
cessing delay) or OD (playout delay) in order to decompose
all the components. More specifically, we need to further
determine the occurrence of t3 (shown in Figure 2) in order
to obtain PD and OD.

The rationale behind probing ¢3 is that it is the time the
menu screen delivered to the client from the server. Thus,
if incoming data is blocked on the client earlier than t3, the

"The Windows hooking mechanism is invoked by calling the
SetWindowsHookEx function. It is frequently used to inject
code into other processes.

8Certain games, such as FEAR, intentionally postpone the
appearance of the menu screen for a short period of time.
Thus, we have calibrated the response delays by subtracting
the intentional menu appearance delay from the measured
delays obtained using the procedure.

t1 (Key event received)

4— Probing range —:

I

Processing Playout

I I delay ! i | I

| | & 1 | delay |

|—’I l—’: | |

| | | | | |

| | | : | |

<> [S j I |
! I il] |% ! N
to t1 tz t3 ts time

(controllable) (probable) (observable)

Figure 2: The decomposition of the response de-
lay. The gray area represents the range in which
the recv() call may be started to be blocked in or-
der to probe the exact location of ¢s.

menu screen will not be shown until the blocking is cancelled.
On the other hand, if incoming data is blocked later than
ts, the menu screen will be displayed despite that no further
screen updates are received and shown.

To facilitate the data blocking mechanism, we hook the
recvfrom() function, which is called when the thin clients
attempt to retrieve a UDP datagram from the UDP/IP
stack. The measurement procedure is as follows:

1. Simulate an ESC key press event by calling the Send-
Input () function at time to. Also, compute tpiock as
a random time between RD — 100 ms and RD + 50
ms®, assuming that the playout delay is shorter than
100 ms.

2. If the menu screen appears before tpock, record the
time as tmenu and terminate the procedure. Other-
wise, at tpiock, temporarily block all the subsequent
recvfrom() calls for one second*’.

3. Wait until the menu screen appears (and note the time

as tmenu)-

If tmenw is later than tpock + 1 sec, we consider that the
blocking is successful and ¢3 should be some time later than
thiock. In this case, triock is added to the set thiock succeeded-
On the other hand, if t;eny is earlier than tpiock, we con-
sider that the blocking is failed and ¢3 must be some time
earlier than tmeny. In this case, tmeny is added to the set
tbiock_failed- By repeating the procedure a number of times,
we can obtain a set tpiock_succeeded that are earlier than ts,
and another set tyiock faited that are later than ¢z, where t3
must lie approximately at the boundary of the two sets.

We then estimate t3 as the point that yields the minimum
sum of the two density functions formed by tpiock succeeded
and tuiock_failed respectively, where each density function is
computed as the mixture of the Gaussian density functions
centered at each element with a standard deviation of any
reasonable magnitude!!. After estimating t3, we can com-
pute PD (server processing delay) as t3 — to — ND and OD
(playout delay) as t4 — t3.

9The 50-ms interval is chosen arbitrarily in order to leave
a “safe zone” that ensures the menu screen will be blocked
with a non-zero probability.

10The one-second interval is chosen arbitrarily in order to de-
termine whether or not the menu screen is blocked. Other
values can also apply without affecting the measurement re-
sults.

1Tn our experiment, we use a standard deviation of 20 ms;
however, other values of the same order of magnitude would
yield nearly identical ¢35 estimates.

250
I
120

Iteration
150
I
Iteration
Iteration
80
T T Y T B

X
84 { KO X A
o 4x o XA e E ¥ °
T T T T T T
140 180 220 260 100 150 200 250 60 80 100 120 140 160
Elapsed time (ms) Elapsed time (ms) Elapsed time (ms)
o SMG (Batman) SMG (DOW, SMG (FEAR)
8 — —
- i x R j N . «
8 8 A % X
27 Q g % /% x*
cs < x c® /% X
§3 S S o /% % x
g %o | o7 /% X X
2 g° Sl Exx ¥
o B S/ 2o
] < P & x, & X x
° o — X od X% &
—

740 760 780 800 820 620 660 700 740 600 650 700 750
Elapsed time (ms) Elapsed time (ms) Elapsed time (ms)

Figure 3: The scatter plots of tyock_succeeded and
tolock_failed Samples, denoted by red crosses and blue
circles respectively. The vertical dashed lines denote
the estimates of t3 minus the network delay.

o
8 W Batman 784 ® 28
E © = DOW 699 699 8
g || D FEaR £ 20 21
© o
° © g 17
o ° g o 15 15
=3 2
g% £
8 o | 220 200 El
S &
g8 114 o,
)
OnLive SMG OnLive SMG

Figure 4: The estimated processing delays and play-
out delays of both cloud gaming platforms.

3.6 Measurement Results

Figure 3 shows the scatter plots of thiock succeedea and
tolock_failed Samples, denoted by red crosses and blue circles
respectively. Note that we have subtracted all the samples
by ND in order to remove the effect of network delay be-
tween our PC and the OnLive data center. We can observe
that the ranges of tbiock_succeeded aNd tyiock_failed S€ts are not
disjoint. This is reasonable because there may be fluctua-
tions in the server’s and client’s workloads, and the network
delay may vary due to network congestion. Because t3 (and
consequently PD and OD) are inferred based on a set of iter-
ations, we validate the robustness of ¢3 by cross-validation.
That is, instead of using the data from all iterations, we se-
lect 50 iterations at random and use them to estimate t3.
The procedure is repeated at least 30 rounds. If the es-
timated values for t3 in different rounds are close, we can
confirm that the estimated PD and OD are reliable and not
susceptible to measurement noises.

Figure 4 shows the average processing delays and play-
out delays as well as their 95% confidence bands of OnLive
and SMG when Batman, DOW, and FEAR are played. As
can be seen, the confidence bands of both processing and
playout delays are fairly small, which indicates that our pro-
posed measurement technique produces robust estimates of
the delay components.

From the graph, OnLive’s processing delays are much
shorter than those of SMG. This should be because OnLive
utilizes a more efficient, possibly hardware-based, video en-
coder to encode game screens in real time. Another possi-
ble explanation is that the processing power and rendering
power of our SMG server (Intel Core i7-based) are much

lower than those of the OnLive server. Taking a closer look
at OnlLive, its processing delay is approximately 200 ms
for Batman and DOW and 100 ms for FEAR. We consider
FEAR’s shorter processing delay is an intentional arrange-
ment by OnLive as FPS games are especially susceptible to
lags [1,3], and the shorter delay may be the consequence of
higher-performance servers'? for the game. Considering ac-
tion and RTS games are slower-paced, OnLive’s differential
resource provisioning looks a reasonable strategy to provide
an overall satisfactory gaming experience to players [2].

As to the average playout delays of both platforms, On-
Live spends 20-30 ms and SMG spends ~15 ms in frame
decoding and display. Both systems perform similarly well
in this aspect, as such short playout delays would not have
a serious impact on the gaming experience.

To summarize, OnLive’s overall streaming delay (i.e., the
processing delay at the server plus the playout delay at the
client) for the three games is between 135 and 240 ms, which
is acceptable if the network delay is not significant. On the
other hand, real-time encoding of 720p game frames seem
to be a burden to SMG because the processing delay alone
can be longer than half a second. Investigating whether
the extended delay is due to design/implmenetation issues
of SMG or it is an intrinsic limit of software-based cloud
gaming platforms will be part of our future work.

4. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a general methodology
to measure the latency components of cloud gaming sys-
tems, even those that are proprietary and closed. We applied
the methodology on two platforms, OnLive and StreamMy-
Game, and identified that OnLive implements a game-genre-
based differential resource provisioning strategy to provide
sufficiently short latency for real-time gaming. On the other
hand, StreamMyGame seems to have difficulties providing
real-time game graphics in 720p resolution with an Intel
Core i7 desktop PC, which leaves us an issue to investigate
whether the extended delay is due to an intrinsic limit of
software-based cloud gaming systems.

In our future work, we will continue to improve the appli-
cability and accuracy of the proposed methodology. In ad-
dition, we plan to apply the methodology to more platforms
for understanding their strengths and weaknesses, and de-
rive general guidelines for designing satisfactory cloud gam-
ing systems.

5. REFERENCES

[1] Y.-C. Chang, K.-T. Chen, C.-C. Wu, C.-J. Ho, and
C.-L. Lei. Online game QoE evaluation using paired
comparisons. In Proceedings of IEEE CQR 2010, June
2010.

[2] K.-T. Chen, P. Huang, and C.-L. Lei. How sensitive are
online gamers to network quality? Communications of
the ACM, 49(11):34-38, Nov 2006.

[3] M. Claypool and K. Claypool. Latency and player
actions in online games. Commun. ACM, 49:40-45,
November 2006.

[4] A. M. Lai and J. Nieh. On the performance of
wide-area thin-client computing. ACM Trans. Comput.
Syst., 24:175-209, May 2006.

2http:/ /blog.onlive.com/2009/05/12/hopping-through-
cloud-onlive/

